

Metal Forming (金屬成型)

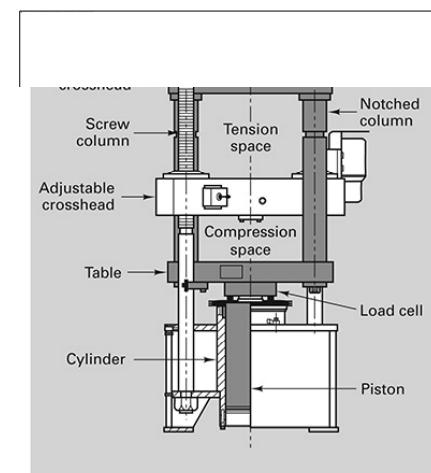
Chapter 15: Fundamentals of Metal Forming

1

Large group of manufacturing processes in which **plastic deformation** is used to change the **shape** of metal workpieces

- Die (模具)
- The metal takes a shape of the die
- A force exceeding the yield stress (降伏應力) is applied

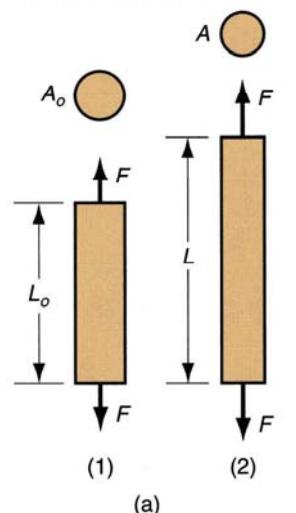
2


Static Properties of Materials

- Constant force on a material is called a static force
- Strength of a material is important
 - Elastic stretching or deflection of a material is related to **Young's Modulus**
- A number of tests have been developed to determine these static properties of materials

3

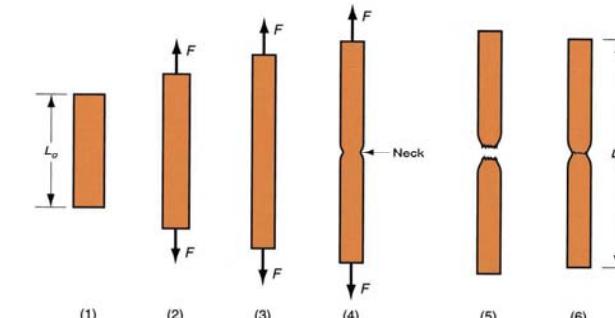
Static Testing


- **Tensile test**
 - Uniaxial test
 - Generates an engineering stress-strain curve
- **Compression test**
 - Difficult to test compression
 - Similar results to that of the tensile testing

4

Tensile Test (拉伸試驗)

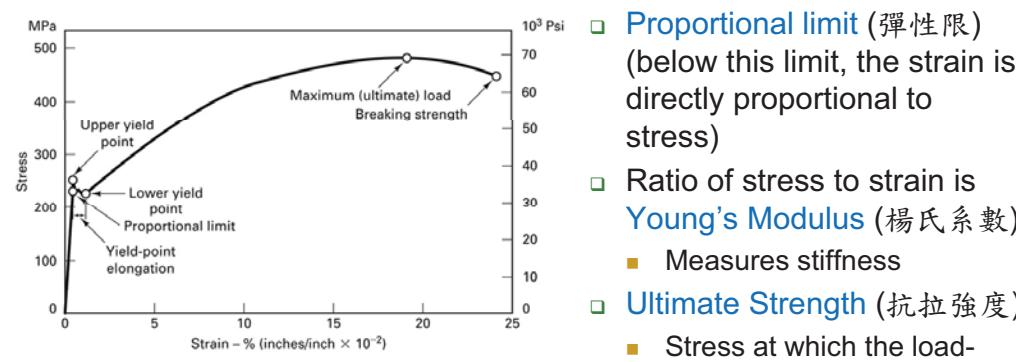
- In the test, a force pulls the material, elongating it and reducing its diameter



Tensile test: (a) tensile force applied in (1) and (2) resulting elongation of material (Source: Groover, 2005)

5

Tensile Test Sequence


- Typical progress of a tensile test: (1) beginning of test, no load; (2) uniform elongation and reduction of cross-sectional area; (3) continued elongation, maximum load reached; (4) necking begins, load begins to decrease; and (5) fracture.

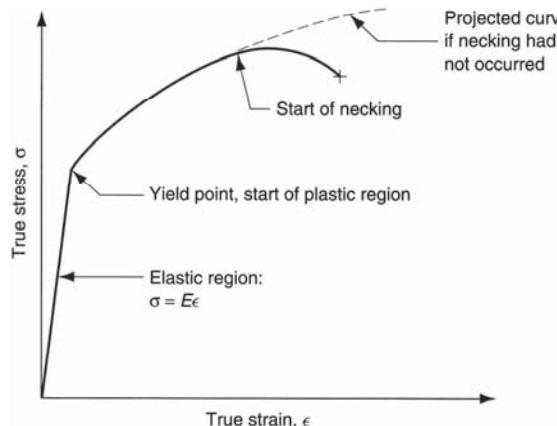
(Source: Groover, 2005)

6

Engineering Stress-Strain Curve

7

Additional Properties from the Stress-Strain Curve

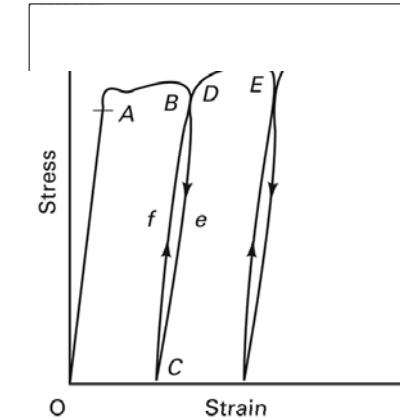

- Plastic deformation- permanent change in shape due to a load that exceeded the elastic limit
- Yield point (降伏點)- stress value where additional strain occurs without an increase in stress
- Offset yield strength- the stress required to produce an allowable amount of permanent strain
- Toughness (韌性)- work per unit volume to fracture a material
- Total area under the stress-strain curve

8

True Stress-Strain Curve

- True stress-strain curve

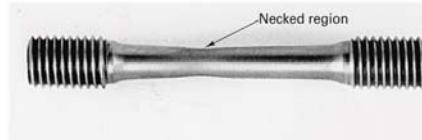
- Instantaneous stress versus the summation of the incremental strain


(Source: Groover, 2005)

9

Strain Hardening (應變硬化)

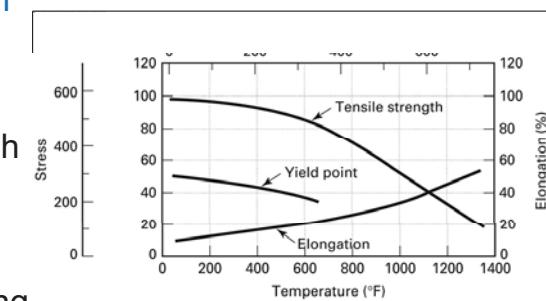
- Loading and unloading within the elastic region will result in cycling up and down the linear portion of the stress strain curve


- When metals are plastically deformed, they become harder and stronger (**strain hardening**)

10

Ductility

- Necking** is a localized reduction in cross sectional area
- For ductile materials, necking occurs before fracture
- Percent elongation** is the percent change of a material at fracture


Percent Reduction in Area:

$$R.A. = \frac{A_0 - A_f}{A_0} \times 100\%$$

11

Temperature Effects

- Ductile-brittle transition temperature** is the temperature at which the response of the material goes from high energy absorption to low energy absorption
- Creep** (潛變) is failure of a material due to long term exposure to elevated temperature

12

Introduction to Metal Forming

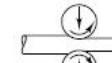
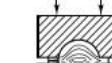
- Deformation processes have been designed to exploit the plasticity of engineering materials
- **Plasticity** is the ability of a material to flow as a solid without deterioration of properties
- Deformation processes require a large amount of force

13

Basic Types of Deformation Processes

- Bulk deformation
 - Rolling (輥壓)
 - Forging (鍛造)
 - Extrusion (擠製)
 - Wire and bar drawing (拉製)
- Sheet metalworking
 - Bending (彎曲加工)
 - Deep drawing
 - Cutting (切斷)
 - Miscellaneous processes

15



Material Properties in Metal Forming

- Desirable material properties:
 - Low yield strength (低降伏強度)
 - High ductility (高延展性)
- These properties are affected by temperature:
 - Ductility increases and yield strength decreases when work temperature is raised
- Other factors:
 - Strain rate and friction

14

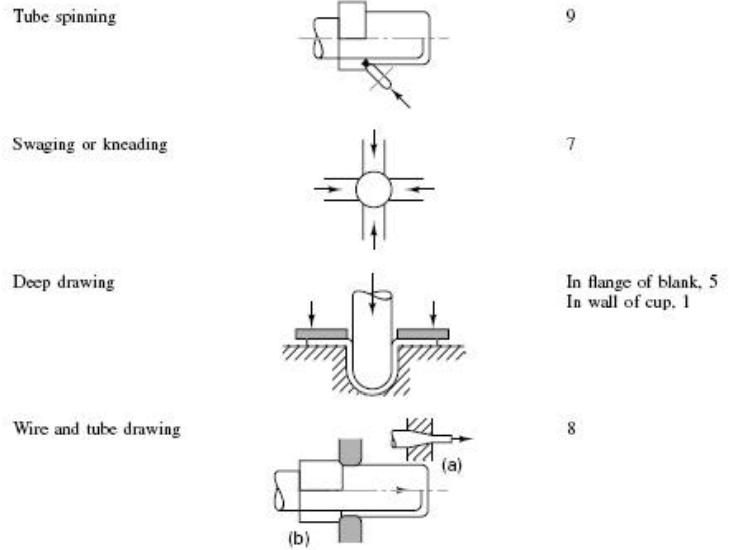
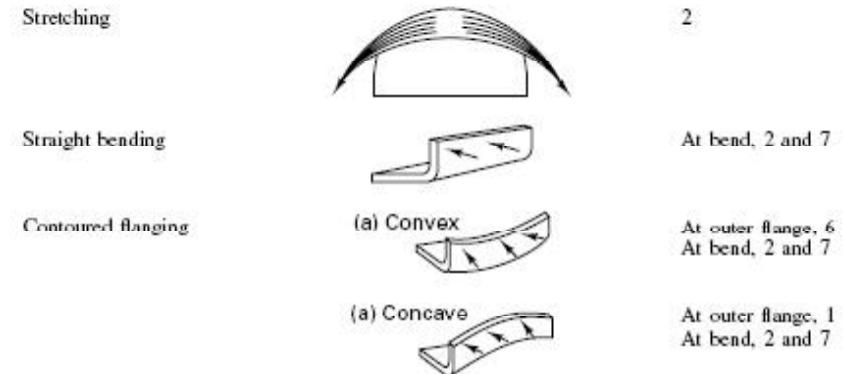

Forming Operations

TABLE 15-2 Classification of Some Forming Operations

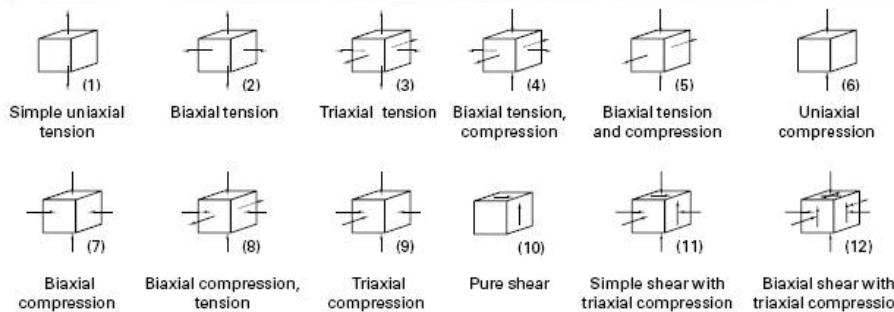
Process	Schematic Diagram	State of Stress in Main Part During Forming ^a
Rolling		7
Forging		9
Extrusion		9
Shear spinning		12


16

Forming Operations

17

Forming Operations



* Numbers correspond to those in parentheses in Table 15-1.

18

States of Stress

TABLE 15-1 Classification of States of Stress

19

Forming Processes: Independent Variables

- Forming processes consist of independent and dependent variables
- Independent variables- control is direct and immediate
 - Starting material
 - Starting geometry of the workpiece
 - Tool or die geometry (模具的幾何形狀)
 - Lubrication (潤滑)
 - Starting temperature
 - Speed of operation
 - Amount of deformation

20

Dependent Variables

- Dependent variables- control is entirely indirect - determined by the independent variable selection
 - Force or power requirements
 - Material properties of the product
 - Exit or final temperature
 - Surface finish and precision
 - Nature of the material flow

21

Independent-Dependent Relationships

- Information on the interdependence of independent and dependent variables can be learned in three ways
 - Experience
 - Experiment
 - Process modeling

Independent variables	Links	Dependent variables
Starting material	-Experience-	Force or power requirements
Starting geometry	-Experiment-	Product properties
Tool geometry		Exit temperature
Lubrication		Surface finish
Starting temperature	-Modeling-	Dimensional precision
Speed of deformation		Material flow details
Amount of deformation		

22

Process Modeling

- Simulations (模拟) are created using finite element modeling
- Models can predict how a material will respond to a rolling process, fill a forging die, flow through an extrusion die
- Heat treatments (热處理) can be simulation
- Costly trial and error development cycles can be eliminated

23

General Parameters

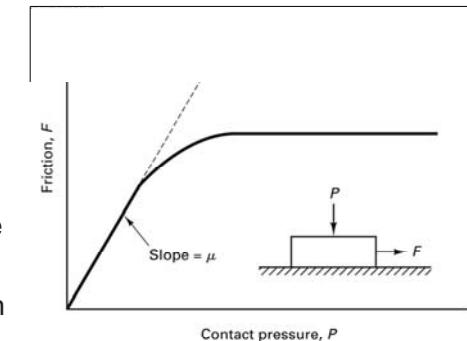
- Material being deformed must be characterized
 - Strength or resistance for deformation
 - Conditions at different temperatures
 - Formability limits
 - Reaction to lubricants
- Speed of deformation and its effects
- Speed-sensitive materials- more energy is required to produce the same results

24

Friction and Lubrication Under Metalworking Conditions

- High forces and pressures are required to deform a material
- For some processes, **50% of the energy** is spent in overcoming friction
- Changes in lubrication can alter material flow, create or eliminate defects, alter surface finish (表面精度) and dimensional precision (尺寸精度), and modify product properties

25


Friction

- Friction is resistance to sliding along an interface
- Resistance can be attributed to:
 - Abrasion
 - Adhesion
- Resistance is proportional to the **strength of the weaker material** and the contact area

27

Friction Conditions

- Metalforming friction differs from the friction encountered in mechanical devices
- For light, elastic loads, friction is proportional to the applied pressure
 - μ is the coefficient of friction
- At high pressures, friction is related to the **strength of the weaker material**

The effect of contact pressure on the frictional resistance between two surfaces.

26

Surface Deterioration

- Surface wear (表面磨耗) is related to friction
- Tooling wear is economically costly and can impact dimensional precision
- **Tolerance control** can be lost
- Tool wear can impact the **surface finish**

28

Lubrication

- Key to success in many metalforming operations
- Primarily selected to reduce friction and tool wear, but may be used as a thermal barrier, coolant, or corrosion retardant
- Other factors
 - Ease of removal, lack of toxicity, odor, flammability, reactivity, temperature, velocity, wetting characteristics

29

Temperature Concerns

- Workpiece temperature can be one of the most important process variables
- In general, an increase in temperature is related to a **decrease in strength, increase in ductility**, and decrease in the rate of strain hardening
- Hot working
- Cold working
- Warm working

30

Hot Working

- Plastic deformation of metals at a temperature above the **recrystallization temperature**
- Recrystallization temperature = about $0.6T_m$
- Temperature varies greatly with material
- Recrystallization removes the effects of **strain hardening**
- Hot working may produce undesirable reactions from the metal and its surroundings

31

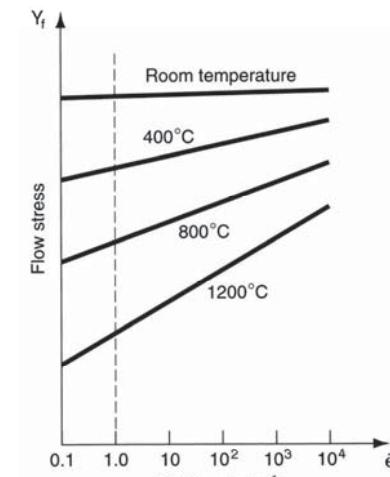
Advantages of Hot Working

- Large plastic deformation
- Lower forces and power required
- Reduce fracture in cold working
- Strength properties of product are generally isotropic (等向性)
- **No work hardening**
 - Advantageous in cases when part is to be subsequently processed by cold forming

32

Disadvantages of Hot Working

- Lower dimensional accuracy
- Higher total energy required
 - Due to the thermal energy to heat the workpiece
- Work surface oxidation (scale)
 - Poorer surface finish
- Shorter tool life


33

Effect of Temperature on Flow Stress

- Effect of temperature on flow stress for a typical metal.

$$Y_f = C\dot{\epsilon}^m$$

where C = strength constant (similar but not equal to strength coefficient in flow curve equation), and m = strain-rate sensitivity exponent

(Source: Groover, 2005)

34

Hot Working

- Engineering properties can be improved through reorienting inclusion or impurities
- During plastic deformation, impurities tend to flow along with the base metal or fraction into rows of fragments

Cross section of a 4-in.-diameter case copper bar polished and etched to show the as-cast grain structure.

Flow structure of a hot-forged gear blank. Note how flow is parallel to all critical surfaces. (Courtesy of Bethlehem Steel Corporation, Bethlehem, PA.)

35

Temperature Variations in Hot Working

- Success or failure of a hot deformation process often depends on the ability to control temperatures
- Over 90% of the energy imparted to a deforming workpiece is converted to heat
- Nonuniform temperatures may be produced and may result in cracking
- Thin sections cool faster than thick sections

36

Cold Working

- Performed at **room temperature** or slightly above
- Advantages as compared to hot working
 - ❑ No heating required
 - ❑ **Better surface finish**
 - ❑ **Superior dimensional control**
 - ❑ Better reproducibility
 - ❑ Strength, fatigue, and wear are improved
 - ❑ **Directional properties** can be imparted
 - ❑ Contamination is minimized

37

Disadvantages of Cold Working

- **Higher forces** are required to initiate and complete the deformation
- Heavier and more powerful equipment and stronger tooling are required
- **Less ductility** is available
- Metal surfaces must be clean and scale-free
- Intermediate anneals may be required
- Imparted **directional properties** can be detrimental
- Undesirable residual stresses (殘留應力) may be produced

38

Metal Properties and Cold Working

- Two features that are significant in selecting a material for cold working are
 - ❑ Magnitude of the yield-point stress
 - ❑ Extent of the strain region from yield stress to fracture
- **Springback (回彈)** should also be considered when selecting a material

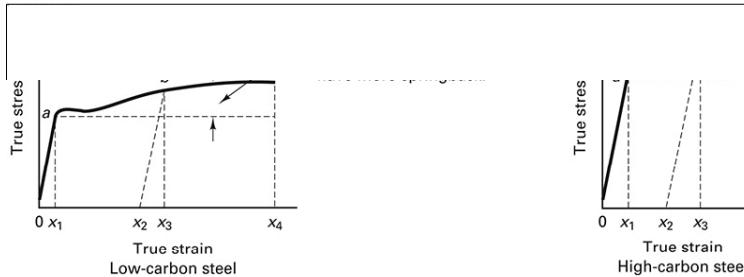
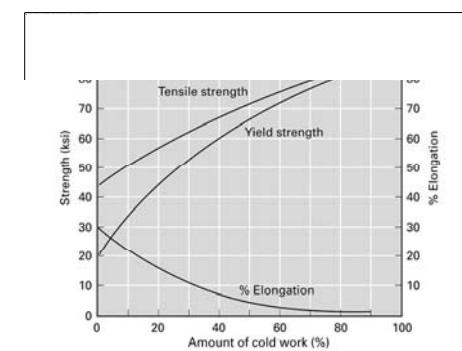



Figure 15-6 Use of true stress-true strain diagram to assess the suitability of two metals for cold working.

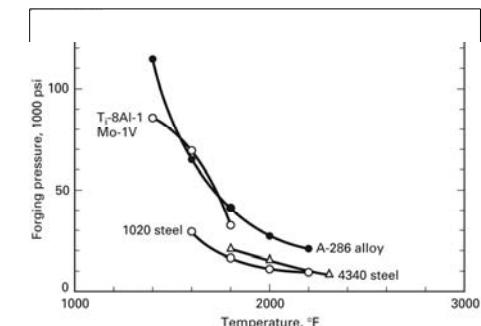
39

Additional Effects of Cold Working

- **Annealing heat treatments** may be performed prior or at intermediate intervals to cold working
- Heat treatments allows additional cold working and deformation processes
- Cold working produces a structure where properties vary with direction, **anisotropy**

Mechanical properties of pure copper as a function of the amount of cold work (expressed in percent).

40


Warm Forming

- Deformations produced at temperatures intermediate to cold and hot working ($0.3T_m - 0.6T_m$)
- Advantages
 - Reduced loads on the tooling and equipment
 - Increased material ductility
 - Possible reduction in the number of anneals
 - Less scaling and decarburization
 - Better dimensional precision and smoother surfaces than hot working
 - Used for processes such as forging and extrusion

41

Isothermal Forming (等溫成型)

- Deformation that occurs under **constant temperature**
- Dies and tooling are heated to the same temperature as the workpiece
- Eliminates cracking from nonuniform surface temperatures
- Inert atmospheres may be used

Yield strength of various materials (as indicated by pressure required to forge a standard specimen) as a function of temperature. **Materials with steep curves may require isothermal forming.** (From "A Study of Forging Variables," ML-TDR-64-95, March 1964; courtesy of Battelle Columbus Laboratories, Columbus, OH.)

42