Appendix A: Modelling of the TWIP system

We derive the model of the TWIP system by two methods: the Newton Second Law
and the Lagrange method.

A. 1. Motor dynamics

The output torques of the motors can be represented as follows:
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in which T, and T, are the output torques on the right and left, respectively. V, and
V, are the input voltages on the right and left, respectively. n, is the gear ratio, K, is
the motor constant, while K, is the DC motor back EMF constant. L and R are the
motor inductance and resistance, respectively. ¢, and ¢! are the rotational angles of

the right motor and the left motor, respectively. f,, is friction coefficient between the
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cart body and the motors. Suppose the motor inertia is J, the applied torques to the
wheels can be represented as follows:

T =T, -n’J.0, (A3)

T =T,-n’J,6, (A4)
where T and T/ are the torques on the right wheel and left wheel, respectively.

A.2. Dynamic Equations by the Newton’s Second Law

First, we apply the Newton’s Second Law with the assumption that the wheels roll
without slipping. The schematic diagrams of the TWIP system is shown in Figure 1,
where the rotational angle of the motor 8, and the pitch angle y can be obtained from

the encoder and the IMU, respectively. The wheels” angle can be derived as follows:

60, =y+06,
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6 =y +6,

where 6, and 6, represent the rotational angles of the right and left wheels respectively
and ¢ and @ represent the rotational angles of the right motor and the left motor,
respectively. The forward wheel angle 6, the motor angle 6, , and the steering angle ¢
are defined as:
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Referring to Figure Al, the positions of points A , A, A, and B can be repre-
sented as follows:
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Taking derivatives of (A9) gives the following equations:
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Similarly, taking derivatives of (A10) results in:
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Figure Al. The TWIP 3-D system: (a) The schematic diagram in xy-z plane; (b) The schematic dia-
gram in x-y plane.

The free body diagram of the left and right wheel are shown in Figure A2a,b with the
corresponding D’Alembert’s forces ( mA ) mA(Z) , m/j\(x) , and mfﬁ(z) ) and the
D’Alembert’s moments (J,6, and J,6,). The dynamic equations of the wheels can be

expressed as follows:

fo=Fppg ~MAG =0

> F, =0 gives: .
fo = Fam ~MAG =0

(A12)



N=mg—F, ;) ~MA =0

> F, =0 gives: (A13)
N-mg—F,;—mA; =0
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rF,W) + rm/—\(x) +J,6-T. =0

Similarly, the free body diagram of the cart is shown in Figure A2c with the corre-
sponding D’Alembert’s forces (MB, and MB,), and the D’Alembert’s moment J, i .

The dynamic equations can be represented as follows:

D F.=0gives:F, , +F,, —MB, =0 (A15)
> F, =0 gives: Fa) T Fap ~Mg—MB, =0 (A16)

D> M, =0gives: T/ +T/ —J 47 —Mg(siny — MB,(siny + MB, (cosy =0 (A17)
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Figure A2. The free body diagram of TWIP in xy-z plane: (a) the right wheel; (b) the left wheel; (c) the cart.

Summarizing the two equations of (Al4) and simplifying it with the
(A3-A6)(A11)(A15) gives:

T, +T, =[(2m+M)r*+23, +2n2J, |6 +(Mricosy —2nJ, )iy —Mriy?sing  (A18)

Taking linearization of (A18) about y =0 results in:
T, +T, =[(2m+M)r* +2], +2n7J, |6 +(Mre—2n2d, )y (A19)
Substituting (A3-A6)(A11) to (A17) gives:
—(T, +T,) =(Mrecosy —2n23 )G+(M* +J, +2n23 )j7 —Mg(siny — M’ siny cosyd”  (A20)
Taking linearization of (A20) about ¥ =0 results in:

—(T,+T)=(Mrc=2n23, )6 +(M* +J, +2n23 )i —Mgly (A21)



The free body diagram of the cart in the x-y plane is shown in Figure A3 with the

corresponding D’ Alembert’s forces (MB, and Mléy ) and the D" Alembert’s moment J,¢.

Taking moments about A, gives:

?(FMX)_FA‘(X))_JM_MBV“I”W:O (A22)

Substituting (A3-A6)(A11)(A14) to (A22) gives:
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Taking linearization about ¢ =0 results in:
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Figure A3. The free body diagram of TWIP in x-y plane.

A.3. Dynamic Equations by the Lagrange method

Now we apply the Lagrange method to derive the transfer function of the TWIP
system for verification. The system dynamics can be described by the Lagrange method
as follows:

L=T,+T,-U (A25)

i 6_L _i =T A26

dt{og, | oq; ' (A26)
where L is the Lagrange’s function. T, and T, represent the linear and the rotational
kinetic energy, respectively. U is the potential energy of the system. g, represents the

generalized coordinates, while T,, forj=6, y, ¢ is the applied torque on the corre-

sponding axis. First, T;, T,,and U are as follows:
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U = Mg/cosy (A29)

Second, T,, T,, and T, can be represented as in the following:



T, =[(2m+M)r*+23, +2n2J, |6+ (Mrcosy —2n23,, )i —Mriy* siny (A30)
T, = (Mr[cosz//—ansz)é#(MCz +J, +2n12Jm)zj/'— Mg/siny —MZsiny cosyd®  (A31)
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Taking linearization about ¥ =0 and ¢=0 resultin:

T, =[(2m+M)r*+23, +2n23, |G+ (Mre-2n23, )i (A33)

T, =(Mrc—2n23, )6 +(M* +3, +202J, )i/ —Mg(y (A34)
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Note that (A33), (A34), and (A35) are the same as (A19), (A21), and (A24), respectively,
considering the following conditions:

T,=T,+T.,T, =—(T,+T)). T, =¥(Tr -T) (A36)

A.4. System Transfer Functions
Taking Laplace transform of (A33-A35) gives the following equations:

T, =[(2m+M)r*+23, +2n2], |s°6+(Mrc—2n?J, )s% (A37)
T, =(Mre—2n23,)s°0+(M 2 +3, +202J, )s%7 - Mgl (A38)
. (1 W2 .

T, :{EmW2+J¢+F(Jw+n12\]m)}52¢ (A39)

where T(s)= L{T (t)} represents the Laplace transform of T(t).

First, considering the translational motion of the TWIP system, we substitute (A5-A7)
to the summation of (A37) and (A38). Assume @, =6, =6, and 6, =6, =0, the transfer

function from the pitch angle to the motor angle can be represented as follows:
i £{6,} _sg, _—A@m+M)r*+23, +2Mrl+MI’ +3,15° + Mgl
©Liy) sy [@m+M)r*+Mrl+23, ]s*

which gives equation (1). Then, the relation between the pitch angle  and the forward
wheel angle @ can be directly derived from (A38), as in the following:

T, —[(MI*+3, +2n2J,)s*-Mgl]

é:
(Mrl =2n?J,)s?

(A40)

Substituting (A40) and (A36) into (A37) gives the following relation:



s [@m+M)r* +Mrl+2, s
L [@m+M)rt 420, +2n23, [ (MI* 43, +2n73, )s* ~Mgl |- (Mrl 23, )’s?
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which is equation (2). Third, substituting the summation of (A37) and (A38) with (A36)
gives the following equation:
rsd  r[=(J, +MI>+Mrl)s® + Mgl |

H > =
v [(2m+M)r2+MrI+2JW]s

\

which is equation (10). Finally, taking Laplace transform of (Al) and (A2) and applying
the above H, and G,, we can obtain the system’s block diagram, as shown in Figure 2.

Second, considering the steering motion of the TWIP system, we can derive the
following equation from (A39):

6= 1

t 2 2
T, [1 .., w . (A41)
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Furthermore, we can assume 6 =-6,, ¢, =—6! and rewrite (A8) as

(gr_gl)zﬂgr =__2r
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Substituting (A5-A7) to the summation of (A37) and (A38), the transfer function from the
wheel angle to the motor angle can be represented as follows:

s sg  [2m+M)r?+23, +2Mrl+MI? +]J, Js* — Mgl
T sg sO (Mrl+MI” +J,)s* — Mgl

H, (A43)

Finally, we can obtain the steering system’s block diagram, as shown in Figure A4, from
the equations of (A1-A2) and (A41-A43).
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Figure A4. Block diagram of the steering system.

The transfer functions matrix from the motor voltages to the system angles can be
expressed as:

0 Y G, G, Y
y|=G |:V|r:| =Gy Gy {V,r:| (A44)
¢ Gy Gy



where V, and V, are the right and left motor voltages. Note that G,, =G,,, G, =G,,,

and G, =-G;, . Substituting the parameters of Table 1 gives

G —G - 2.963x10%s? —7.894x10 s —3.003x10°
LT 51 473.85% +44025° —5994s% —3.423x10%s

-9106s

G :G =
T2 51 473.85% + 44025 —5994s — 3.423%10*

_ 2117x10°
% §° 1 474.25% + 29555
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Suppose the TWIP system moving on the translational direction, i.e.

From (A44), the model for the balance control loop part can be described as:

—-9106s v
s* +473.85° +4402s® —5994s —3.423x10* ¥

=G,V +GuV, = G21Vu/ =

which gives equation (3).
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