Dynamics of a twelve-car train model

We derive a twelve-car train model, where the dynamic equations of each car are similar to Appendix A except: (1) the first car has a parallel spring/damper set at the rear; (2) the middle cars have both front and rear connections; (3) the last car has a parallel spring/damper set at the front. The three cases are considered as in the following.

(1) Dynamics of the first car:

The dynamics of the first car is similar to Eqs. (3)-(60), except the car-body Eqs. (3)-(12). Therefore, we use the same parameters of Table Π and use $y_{c}^{F}, z_{c}^{F}, \phi_{c}^{F}, \theta_{c}^{F}$, and ψ_{c}^{F} to represent the lateral, vertical, roll, pitch, and yaw motions of the car-body, and $y_{t 1}^{F}, z_{t 1}^{F}, \phi_{t 1}^{F}, \psi_{t 1}^{F}\left(y_{t 2}^{F},{\underset{t 2}{ }}_{F}^{F},{ }_{\phi_{t 2}}^{F}, \psi_{t 2}^{F}\right)$ to represent the lateral, vertical, roll, and yaw motions of the front (rear) bogie of the Fth-car ($F=1$ for the first car). As shown in Fig. 5, the connection is modeled as an equivalent spring with $K_{b y}=20 \mathrm{kN} / \mathrm{m}$ located at $h_{k}=0.75 \mathrm{~m}$ and an equivalent lateral damper with $C_{b y}=50 \mathrm{kNs} / \mathrm{m}$ located at $h_{c}=1.5 \mathrm{~m}$ above the center of gravity of the car body. In addition, we assume the distance between the centers of gravity of each car is $L_{c o n}=10.3 \mathrm{~m}$. The following derived equations are used to replace Eqs. (3)-(12) for the first car, where the boldface represent the extra terms caused by the connected springdamper set:

$$
\begin{gather*}
m_{c} \ddot{y}_{c}^{F}=F_{s y c}^{F} \tag{61}\\
m_{c} \ddot{z}_{c}^{F}=F_{s z c}^{F} \tag{62}\\
I \ddot{\phi}_{c}^{F}=M_{s x c}^{F} \tag{63}\\
I_{c y} \ddot{\theta}_{c}^{F}=M_{s y c}^{F} \tag{64}\\
I_{c} \ddot{\psi}_{c}^{F}=M_{s z c}^{F} \tag{65}
\end{gather*}
$$

in which the suspension forces and moments acting on the F-car of the car body are
derived as follows:

$$
\begin{align*}
& F_{s y c}^{F}=2 K_{s y} y^{F}{ }_{t 1}+2 C_{s y} y^{-F}+2 K_{s y} y^{F}+2 C_{d y} y^{y^{F}}-4 K_{s y} y^{F}{ }_{c} \\
& -4 C_{s y} \dot{y}_{c}^{F}-4 K{ }_{s y}{ }^{h} \phi^{F}-4 C_{s y}{ }^{h} \dot{\phi}_{c}^{F} \\
& -C_{b y}\left(\dot{y}_{c}^{F}-y^{F+1}\right)-K\left(y_{b y}^{F}-y_{c}^{F+1}{ }_{c}\right) \tag{66}\\
& -C_{b y} \boldsymbol{h}_{S}\left(\boldsymbol{\phi}_{c}^{F}-\dot{\phi}_{c}^{F+1}\right)+\boldsymbol{C}_{b y} \boldsymbol{h}_{c}\left(\boldsymbol{\phi}_{c}^{F}-\dot{\phi}_{c}^{F+1}\right) \\
& -C_{b y} L_{c o n}\left(\dot{\psi}_{c}^{F}+\dot{\psi}_{c}^{F+1}\right)-K_{b y} L_{c o n}\left(\psi_{c}^{F}+\psi_{c}^{F+1}\right) \\
& -\boldsymbol{K}_{b y} \boldsymbol{h}_{s}\left(\boldsymbol{\phi}_{c}^{F}-\boldsymbol{\phi}_{c}^{F+1}\right)+\boldsymbol{K}_{b y}^{\boldsymbol{h}} \boldsymbol{k}_{k}\left(\boldsymbol{\phi}_{c}^{F}-\boldsymbol{\phi}_{c}^{F+1}\right) \\
& F_{s z c}^{F}=2 K z_{s z}^{F}+2 C z_{s z}^{F} \cdot+2 K{ }_{t 1} z_{s z}^{F}+2 C z_{s z}^{F} \cdot{ }_{t 2}-4 K z_{s z}^{F}-4 C{\underset{c}{s z}}_{F}^{z_{c}} \tag{67}\\
& M_{s x c}^{F}=2 K_{s y} h_{s}\left(y_{t 1}^{F}+y_{t 2}^{F}\right)+2 C_{s y} h_{s}\left(y_{\cdot t 1}^{F}+y_{t 2}^{F}\right) \\
& +2 b_{2}^{2} K_{s z}\left(\phi_{t 1}^{F}+\phi_{t 2}^{F}\right)+2 b_{2}^{2} C_{s z}\left(\phi_{1}^{F}+{ }_{i 2} \phi^{F}\right) \\
& -4 K{ }_{s z} b^{2} \phi^{F}-4 C b_{s z}^{2} \phi_{c}^{F}-4 K h_{s y}^{2} \phi^{F}{ }_{c} \\
& -4 C_{s y} h_{s}^{2} \phi_{c}^{F}-4 h_{s}\left(K_{s y} y_{c}^{F}+C_{s y} y^{F}{ }_{c}\right) \\
& +\boldsymbol{C}_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c} \boldsymbol{y}^{F}{ }_{c}^{+1}-\boldsymbol{C}{ }_{b y}(\boldsymbol{h}-\boldsymbol{h}) \boldsymbol{y}^{F}{ }^{\text {. }}{ }_{c} \tag{68}\\
& -K_{b y}\left(h_{S}-h_{k}\right) y_{c}^{F}+K_{b y}\left(h_{S}-h_{k}\right) y_{c}^{F+1} \\
& -C_{b y}\left(\boldsymbol{h}_{s}-\boldsymbol{h}\right)_{c}^{2} \boldsymbol{\phi}_{c}^{F}+\boldsymbol{C}_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c}^{2} \boldsymbol{\phi}_{c}^{F+1} \\
& -\boldsymbol{K}_{b y}\left(\boldsymbol{h}_{S}-\boldsymbol{h}\right)_{k}^{2} \boldsymbol{\phi}_{c}^{F}+\boldsymbol{K}_{b y}(\boldsymbol{h}-\boldsymbol{h})_{k}^{2} \boldsymbol{\phi}_{c}^{F+1} \\
& -\boldsymbol{C}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{c}\right) \dot{\boldsymbol{\psi}}_{c}^{F}-\boldsymbol{K}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{\boldsymbol{k}}\right) \boldsymbol{\psi}_{c}^{F} \\
& -\boldsymbol{C}_{b y} \boldsymbol{L}_{\text {con }}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{\boldsymbol{c}}\right) \dot{\psi}_{c}^{F+1}-\boldsymbol{K}_{\text {by }} \boldsymbol{L}_{\text {con }}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{\boldsymbol{k}}\right) \psi_{c}^{F+1} \\
& M_{s y c}^{F}=2 K_{s z} L_{2}\left(-z_{t 1}^{F}+z^{F}\right)+2 C_{s z} L_{2}\left(-z_{t 1}^{F}+z_{t 2}^{F}\right) \\
& -\left(4 K_{s z} L_{2}^{2}+4 K_{s x} h_{s}^{2}\right) \theta_{c}^{F}-\left(4 C_{s z} L_{2}^{2}+4 C_{s x} h_{s}^{2}\right) \theta_{c}^{F} \tag{69}
\end{align*}
$$

$$
\begin{align*}
& M_{s z c}^{r}=2 K_{s y} L_{2}\left(y_{t 1}^{r}-y_{t 2}^{r}\right)+2 C_{s y} L_{2}\left(y_{t 1}^{r}-y_{t 2}^{r}\right) \\
& +2 K_{s x} b_{2}^{2}\left(\psi_{t 1}^{F}+\psi_{t 2}^{F}\right)+2 C_{s x} b_{2}^{2}\left(\psi_{t 1}^{F}+\psi_{t 2}^{F}\right) \\
& -4 L_{2}^{2}\left(K_{s y} \psi_{c}^{F}+C \psi_{s \psi_{c}}{ }_{c}\right)-4 b_{2}^{2}\left(K_{s x} \psi_{c}^{F}+C \psi_{s i} \psi_{c}^{F}\right) \\
& -C_{b y} L_{c o n}\left(y_{c}^{F}-y_{c}^{F+1}\right)-K_{b y} L_{c o n}\left(y_{c}^{F}-y_{c}^{F+1}\right) \\
& -C_{b y} L_{c o n} h_{S}\left(\phi_{c}^{F}-\phi_{c}^{F+1}\right)+C_{b y} L_{c o n} h_{c}\left(\phi_{c}^{F}-\phi_{c}^{F+1}\right) \tag{70}\\
& -C_{b y} L_{c o n}^{2}\left(\psi_{c}^{F}+\psi_{c}^{F+1}\right)-K_{b y} L_{c o n} h_{s}\left(\phi_{c}^{F}-\phi_{c}^{F+1}\right) \\
& +K_{b y} L_{c o n} h_{k}\left(\phi_{c}^{F}-\phi_{c}^{F+1}\right)-K_{b y} L_{c o n}^{2}\left(\psi_{c}^{F}-\psi_{c}^{F+1}\right) \\
& \mathbf{- 2 K} \boldsymbol{K}_{b y} \boldsymbol{L}^{\mathbf{2}}{ }_{c o n} \boldsymbol{\psi}_{c}^{\boldsymbol{F + 1}}
\end{align*}
$$

(2) Dynamics of the middle cars:

The dynamics of the middle cars is derived in a similar way. We use $y_{c}^{M}, z_{c}^{M}, \phi_{c}^{M}, \theta_{c}^{M}$, and ψ_{c}^{M} to represent the lateral, vertical, roll, pitch, and yaw motions of the car-body, and $y_{t 1}^{M}, z_{t 1}^{M}, \phi_{t 1}^{M}, \psi_{t 1}^{M}\left(y_{t 2}^{M}, z_{t 2}^{M}, \phi_{t 2}^{M}, \psi_{t 2}^{M}\right)$ to represent the lateral, vertical, roll, and yaw motions of the front (rear) bogie of the Mth-car ($M=2 \sim 11$ for the middle cars). The following derived equations are used to replace Eqs. (3)-(12) for the middle cars, where the boldface represent the extra terms caused by the connected spring-damper sets:

$$
\begin{gather*}
m_{c} \ddot{y}_{c}^{M}=F_{s y c}^{M} \tag{71}\\
m_{c} \ddot{z}_{c}^{M}=F_{s z c}^{M} \tag{72}\\
I_{c x} \ddot{\phi}_{c}^{M}=M_{s s c}^{M} \tag{73}\\
I_{c y} \ddot{\theta}_{c}^{M}=M_{s y c}^{M} \tag{74}\\
I \ddot{\psi}_{c}^{M}=M_{s z c}^{M} \tag{75}
\end{gather*}
$$

in which the suspension forces and moments acting on the M-car of the car body are
derived as follows:

$$
\begin{align*}
& F_{s y c}^{M}=2 K_{s y} y_{t 1}^{M}+2 C_{s y} \dot{y}_{t 1}^{M}+2 K_{s y} y^{M}+2 C_{s y} \dot{y}_{t 2}^{M}-4 K_{s y} y^{M} \\
& -4 C_{s y} y_{c}^{-M}-4 K{ }_{s y}{ }^{h} \phi_{c}^{M}-4 C{ }_{s y} h \dot{\phi}_{c}^{M} \\
& +C_{b y}\left(\dot{y}_{c}{ }^{M-1}-2 \dot{y}_{c}{ }^{M}+\dot{y}_{c}{ }^{M+1}\right)+K_{b y}\left(y_{c}^{M-1}-2 y_{c}{ }^{M}+y_{c}^{M+1}\right) \tag{76}\\
& +C_{b y} \boldsymbol{h}_{S}^{\left(\boldsymbol{\phi}_{c}^{M-1}-\mathbf{2} \dot{\phi}_{c}^{M}+\dot{\boldsymbol{\phi}_{c}^{M+1}}\right)-\boldsymbol{C}_{b y} \boldsymbol{h}_{c}\left(\dot{\boldsymbol{\phi}}_{c}^{M-1}-\mathbf{2} \dot{\phi}_{c}^{M}+\dot{\boldsymbol{\phi}}_{c}^{M+1}\right)} \\
& +C_{b y} L_{c o n}\left(\dot{\psi}_{c}^{M-1}-\dot{\psi}_{c}^{M+1}\right)+\boldsymbol{K}_{b y} L_{\text {con }}\left(\psi_{c}^{M-1}-\boldsymbol{\psi}_{c}^{M+1}\right) \\
& +K_{b y} \boldsymbol{h}_{S}\left(\boldsymbol{\phi}_{c}^{M-1}-\mathbf{2} \phi_{c}^{M}+\phi_{c}^{M+1}\right)-\boldsymbol{K}_{b y} \boldsymbol{h}_{k}\left(\phi_{c}^{M-1}-\mathbf{2} \phi_{c}^{M}+\phi_{c}^{M+1}\right) \\
& F_{s z c}^{M}=2 K z_{s z}{ }^{M}+2 C z_{s z}{ }^{M}+2 K z_{s z}{ }^{M}+2 C z_{s z}^{M} \cdot{ }_{t 2}-4 K z_{s z}^{M}-4 C z_{s z}^{M}{ }_{c} \tag{77}\\
& M_{s x c}^{M}=2 K_{s y} h_{S}\left(y_{t 1}^{M}+y_{t 2}^{M}\right)+2 C_{s y} h_{s}\left(y_{t 1}^{M}+y_{t 2}^{M}\right)+2 b^{2} K_{2}\left(\phi_{s z}{ }_{t 1}+\phi_{t 2}^{M}\right) \\
& +2 b_{2}^{2} C_{s z}\left(\phi_{t 1}^{M}+\phi_{t 2}^{M}\right)-4 K \underset{s z}{K} \underset{2}{b_{2}^{2}} \phi_{c}^{M}-4 C \underset{s z}{ } \underset{2}{b_{c}^{2}} \cdot \phi^{M}-4{ }_{s y} \underset{S_{c}}{h^{2}} \phi^{M} \\
& -4 C_{s y} h^{2} \phi_{b_{c}}{ }^{M}-4 h_{s}\left(K_{s y} y^{M}{ }_{c}+C y_{s y}{ }^{M}{ }_{c}\right)
\end{align*}
$$

$$
\begin{align*}
& +C_{b y}\left(\boldsymbol{h}_{S}-\boldsymbol{h}\right)_{c}^{2} \phi_{c}^{M-1}-2 C_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c}^{2} \phi_{c}^{M}+C_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c}^{2} \phi_{c}^{M+1} \tag{78}\\
& \left.+K_{b y}\left(\boldsymbol{h}_{s}-\boldsymbol{h}_{k}\right)^{2} \phi_{c}^{M-1}-2 K_{b y}(\boldsymbol{h}-\boldsymbol{h})_{k}^{2} \phi_{c}^{M}+K_{b y}^{(\boldsymbol{h}-\boldsymbol{h}}\right)_{k}^{2} \phi_{c}^{M+1} \\
& +C_{b y} L_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{c}\right) \psi_{c}^{M-1}+\boldsymbol{K}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{\boldsymbol{k}}\right) \psi_{c}^{M-1} \\
& -\boldsymbol{C}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{c}\right) \psi_{c}^{M+1}-\boldsymbol{K}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{\boldsymbol{k}}\right) \psi_{c}^{M+1} \\
& M_{s y c}^{M}=2 K_{s z} \underset{2}{L}\left(-z_{t 1}^{M}+z_{t 2}^{M}\right)+2 C_{s z} L_{2}\left(-z_{t 1}^{M}+z_{t 2}^{M}\right) \\
& -\left(4 K_{s z} L_{2}^{2}+4 K_{s x} h_{s}^{2}\right) \theta_{c}^{M}-\left(4 C_{s z} L_{2}^{2}+4 C_{s x} h_{s}^{2}\right) \theta_{c}^{M} \tag{79}\\
& M_{s z c}^{M}=2 K_{s y} L_{2}\left(y_{t 1}^{M}-y_{t 2}^{M}\right)+2 C_{s y} L_{2}\left(y_{t 1}^{M}-y_{t 2}^{M}\right) \\
& +2 C_{s x} b_{2}^{2}\left(\psi_{t 1}^{M}+\psi_{t 2}^{M}\right)+2 K_{s x} b_{2}^{2}\left(\psi_{t 1}^{M}+\psi_{t 2}^{M}\right) \\
& -4 L_{2}^{2}\left(K_{s y} \psi_{c}^{M}+C_{s y} \psi_{c}^{M}\right)-4 b_{2}^{2}\left(K_{s x} \psi_{c}^{M}+C_{s x} \psi_{c}^{M}\right) \\
& -C_{b y} L_{c o n}\left(y_{c}^{M-1}-y_{c}^{M+1}\right)-K_{b y} L_{c o n}\left(y_{c}^{M-1}-y_{c}^{M+1}\right) \tag{80}\\
& -C_{b y} L_{\text {con }} \boldsymbol{h}_{s}\left(\boldsymbol{\phi}_{c}^{M-1}-\phi_{c}^{M+1}\right)+C_{b y} L_{c o n} \boldsymbol{h}_{c}\left(\phi_{c}^{M-1}-\phi_{c}^{M+1}\right) \\
& -C_{b y} L_{c o n}^{2}\left(\psi_{c}^{M-1}+2 \psi_{c}^{M}+\psi^{M+1}{ }_{c}\right)-K_{b y} L_{c o n}^{2}\left(\psi_{c}^{M-1}+2 \psi_{c}^{M}+\psi_{c}^{M+1}\right) \\
& -\boldsymbol{K}_{b y} \boldsymbol{L}_{\text {con }} \boldsymbol{h}_{s}\left(\boldsymbol{\phi}_{c}^{M-1}-\boldsymbol{\phi}_{c}^{M+1}\right)+\boldsymbol{K}_{b y} \boldsymbol{L}_{\text {con }} \boldsymbol{h}_{k}\left(\boldsymbol{\phi}_{c}^{M-1}-\boldsymbol{\phi}_{c}^{M+1}\right)
\end{align*}
$$

(3) Dynamics of the last car:

Similarly, we use the same parameters of Table Π and use $y_{c}^{L}, z_{c}^{L}, \phi_{c}^{L}, \theta_{c}^{L}$, and ψ^{L} to represent the lateral, vertical, roll, pitch, and yaw motions of the car-body, and $y_{t 1}^{L}, z_{t 1}^{L}, \phi_{t 1}^{L}, \psi_{t 1}^{L}\left(y_{t 2}^{L}, z_{t 2}^{L}, \phi_{12}^{L}, \psi_{t 2}^{L}\right)$ to represent the lateral, vertical, roll, and yaw motions of the front (rear) bogie of the $L t h-\mathrm{car}$ ($L=12$ for the last car). The following derived equations are used to replace Eqs. (3)-(12) for the last car, where the boldface represent the extra terms caused by the connected spring-damper set:

$$
\begin{gather*}
m_{c} \ddot{y}_{c}^{L}=F_{s y c}^{L} \tag{81}\\
m_{c} \ddot{z}_{c}^{L}=F_{s z c}^{L} \tag{82}\\
I_{c y} \ddot{\phi}_{c}^{L}=M_{s x c}^{L} \tag{83}\\
I_{c y} \ddot{\theta}_{c}^{L}=M_{s y c}^{L} \tag{84}\\
I_{c y} \ddot{\psi}_{c}^{L}=M_{s z c}^{L} \tag{85}
\end{gather*}
$$

in which the suspension forces and moments acting on the L-car of the car body are derived as follows:

$$
\begin{align*}
& -4 C_{s y} y^{L}-4 K{ }_{c} h_{y} \phi_{s}^{L}{ }_{c}-4 C{ }_{y y} h_{y} \phi_{s}^{L} \\
& +C_{b y}\left(\dot{y}_{c}^{L-1}-\dot{y}_{c}^{L}\right)+K_{b y}\left(y_{c}^{L-1}-y_{c}^{L}\right) . \tag{86}\\
& +C_{b y} \boldsymbol{h}_{S}\left(\dot{\phi}_{c}^{L-1}-\dot{\phi}_{c}^{L}\right)-\boldsymbol{C}_{b y} \boldsymbol{h}_{c}\left(\dot{\boldsymbol{\phi}}_{c}^{L-1}-\dot{\phi}_{c}^{L}\right) \\
& +C_{b y} L_{c o n}\left(\dot{\psi}_{c}^{L-1}+\dot{\psi}_{c}^{L}\right)+\boldsymbol{K}_{b y} L_{c o n}\left(\psi_{c}^{L-1}+\psi_{c}^{L}\right) \\
& +\boldsymbol{K}_{.} \boldsymbol{h}\left(\phi^{L-1}-\phi^{L}\right)-\boldsymbol{K}_{.} \boldsymbol{h} \cdot\left(\phi^{L-1}-\phi^{L}\right)
\end{align*}
$$

$$
\begin{align*}
& F_{s z c}^{L}=2 K z_{s z}^{L}+2 C z_{s z}^{L}+2 K z_{s z}^{L}+2 C z_{s z}^{L}-4 K z_{s z}^{L}-4 C z_{s z}^{L} . \tag{87}\\
& M_{s x c}^{L}=2 K_{s y} h_{S}\left(y_{t 1}^{L}+y^{L}\right)+2 C{\underset{s y}{ } h\left(y^{L}{ }_{t 1}+y^{L}{ }_{t 2}\right)}^{2} \\
& +2 b_{2}^{2} K_{s z}\left(\phi_{t 1}^{L}+\phi_{t 2}^{L}\right)+2 b_{2}^{2} C_{s z}\left(\dot{\phi t}_{t 1}^{L}+\dot{\phi}_{2}^{L}\right) \\
& -4 K_{s z} b_{2}^{2} \phi_{c}^{L}-4 C{ }_{s z} b_{2}^{2} \phi_{c}^{L}-4 K h_{s y}^{2} \phi_{c}^{L}{ }_{c} \\
& -4 C_{s y} h_{s}^{2} \phi_{c}^{L}-4 h_{s}\left(K_{s y} y_{c}^{L}+C_{s y} y_{c}^{L}\right) \\
& +C_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c} \boldsymbol{y}_{c}^{L-1}-\boldsymbol{C}_{b y}(\boldsymbol{h}-\boldsymbol{h}) \boldsymbol{y}^{L}{ }_{c} \tag{88}
\end{align*}
$$

$$
\begin{align*}
& +C_{b y}\left(\boldsymbol{h}{ }_{s} \boldsymbol{h}\right)_{c}^{2} \boldsymbol{\phi}_{c}^{L-1}-C_{b y}(\boldsymbol{h}-\boldsymbol{h})_{c}^{2} \boldsymbol{\phi}_{c}^{L} \\
& \left.+\boldsymbol{K}_{b y}(\boldsymbol{h}-\boldsymbol{h})_{k}^{2} \phi_{c}^{L-1}-K_{b y}{ }_{b} \boldsymbol{h}-\boldsymbol{h}\right)_{k}^{2} \phi_{c}^{L} \\
& +C_{b y} L_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{c}\right) \psi_{\cdot c}^{L-1}+\boldsymbol{K}_{b y} \boldsymbol{L}_{c o n}\left(\boldsymbol{h}_{S}-\boldsymbol{h}_{k}\right) \psi_{c}^{L-1} \\
& +\boldsymbol{C} \quad \boldsymbol{I} \quad(\boldsymbol{h}-\boldsymbol{h}) \mu^{L}+\boldsymbol{K} \quad \boldsymbol{I} \quad(\boldsymbol{h}-\boldsymbol{h}) \boldsymbol{\mu}^{L} \\
& M_{s y c}^{L}=2 K_{s z} L_{2}\left(-z_{t 1}^{L}+z_{t 2}^{L}\right)+2 C_{s z} L_{2}\left(-z^{\cdot}{ }_{t 1}^{L}+z_{t 2}^{L}\right) \\
& -\left(4 K_{s z} L_{2}^{2}+4 K_{s x} h_{s}^{2}\right) \theta_{c}^{L}-\left(4 C_{s z} L_{2}^{2}+4 C_{s x} h_{s}^{2}\right)_{c} \theta_{c}^{L} \tag{89}\\
& M_{s c c}^{L}=2 K_{s y} L_{2}\left(y_{t 1}^{L}-y_{t 2}^{L}\right)+2 C_{s y}^{L}\left(y^{L}-y_{t 1}^{L}{ }_{t 2}\right) \\
& +2 K_{s x} b_{2}^{2}\left(\psi_{t 1}^{L}+\psi_{t 2}^{L}\right)+2 C_{s x} b_{2}^{2}\left(\psi_{t 1}^{L}+\psi_{t 2}^{L}\right) \\
& -4 L_{2}^{2}\left(K_{s y} \psi_{c}^{L}+C{ }_{s y} \psi_{c}^{L}\right)-4 b_{2}^{2}\left(K \psi_{s x} \psi_{c}^{L}+C \psi_{s x} \psi_{c}^{L}\right) \\
& -C_{b y} L_{c o n}\left(y_{c}^{L-1}-y_{c}^{L}\right)-K_{b y} L_{c o n}\left(y_{c}^{L-1}-y_{c}^{L}\right) \\
& -C_{b y} L_{c o n} h_{s}\left(\phi_{c}^{L-1}-\phi_{c}^{L}\right)+C_{b y} L_{\text {con }} h_{c}\left(\phi_{c}^{L-1}-\phi_{c}^{L}\right) \tag{90}\\
& -C_{b y} L_{c o n}^{2}\left(\psi_{c}^{L-1}+\psi_{c}^{L}\right)-\boldsymbol{K}_{b y} \boldsymbol{L}_{\text {con }} \boldsymbol{h}_{s}\left(\phi_{c}^{L-1}-\phi_{c}^{L}\right) \\
& +K_{b y} L_{c o n} \boldsymbol{h}_{k}\left(\phi_{c}^{L-1}-\phi_{c}^{L}\right)-K_{b y} L_{c o n}^{2}\left(\psi_{c}^{L-1}-\psi_{c}^{L}\right) \\
& -2 K_{b y} L_{\text {con }}{ }^{2}{ }^{L}{ }_{c}^{L}
\end{align*}
$$

The dynamic model of the twelve-car DOF train model can be derived by Eqs.
(13)-(90).

